Showing posts with label kalkulus. Show all posts
Showing posts with label kalkulus. Show all posts

Saturday, March 24, 2018

Contoh Soal Turunan Trigonometri dan Pembahasannya

Tutorial kita kali ini adalah mata pelajaran matematika, dimana kita akan membahas berbagai jenis soal-soal yang berkaitan dengan turunan trigonometri.

Pada tutorial sebelumnya kita telah mempelajari tentang turunan fungsi aljabar, maka dalam kesempatan ini dilanjutkan dengan turunan trigonometri.

Rumus Turunan Dasar Trigonometri

Berikut ini adalah beberapa turunan dasar trigonometri yang wajib diketahui sebelum anda memecahkan persoalan turunan trigonometri:
1.  f(x) = sin x  →  f '(x) = cos x
2.  f(x) = cos x  →  f '(x) = −sin x
3.  f(x) = tan x  →  f '(x) = sec2 x
4.  f(x) = cot x  →  f '(x) = −csc2x
5.  f(x) = sec x  →  f '(x) = sec x . tan x
6.  f(x) = csc x  →  f '(x) = −csc x . cot x

Perluasan Rumus Turunan Trigonometri I

Misalkan u merupakan fungsi yang dapat diturunkan terhadap x, dimana u' adalah turunan u terhadap x, maka :
1. f(x) = sin u → f '(x) = cos u . u'
2. f(x) = cos u → f '(x) = −sin u . u'
3. f(x) = tan u → f '(x) = sec2u . u'
4. f(x) = cot u → f '(x) = −csc2 u . u'
5. f(x) = sec u → f '(x) = sec u tan u . u'
6. f(x) = csc u → f '(x) = −csc u cot u . u'

Perluasan Rumus Turunan Trigonometri II

Berikut ini adalah turunan dari fungsi-fungsi trigonometri dalam variabel sudut ax +b, dimana a dan b adalah bilangan real dengan a≠0 : 
1. f(x) = sin (ax + b) → f '(x) = a cos (ax + b)
2. f(x) = cos (ax + b) → f '(x) = -a sin (ax + b)
3. f(x) = tan (ax + b) → f '(x) = a sec2 (ax +b)
4. f(x) = cot (ax + b) → f '(x) = -a csc2 (ax+b)
5. f(x) = sec (ax + b) → f '(x) = a tan (ax + b) . sec (ax + b)
6. f(x) = csc (ax + b) → f '(x) = -a cot (ax + b) . csc (ax + b)

Contoh Soal Turunan Trigonometri

Soal No.1

Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = 4 sin x 
b. f(x) = 3 cos x 
c. f(x) = -2 cos x 
d. f(x) = 2 sec x 
e. f(x) = 2 csc x 

Pembahasan
a. f(x) = 4 sin x → f'(x) = 4 cos x
b. f(x) = 3 cos x → f'(x) = -3 sin x
c. f(x) = -2 cos x → f'(x) = -2 (-sin x) → f'(x) = 2 sin x
d. f(x) = 2 sec x → f'(x) = 2 sec x . tan x
e. f(x) = 2 csc x → f'(x) = 2 (-csc x . cos x) → f'(x) = -2 csc x . cot x


Soal No.2

Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin 6x + cos 6x 
b. f(x) = 3x4 + sin 2x + cos 3x 
c. f(x) = tan 5x + sec 2x 

Pembahasan
a. f(x) = sin 6x + cos 6x → f'(x) = 6 cos 6x - 6 sin 6x
b. f(x) = 3x4 + sin 2x + cos 3x → f'(x) = 12x3 + 2 cos 2x - 3 sin 3x
c. f(x) = tan 5x + sec 2x → f'(x) = 5 sec2 5x + sec 2x . tan 2x


Soal No.3

Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin 3x 
b. f(x) = sin x2 
c. f(x) = sin 3x2 
d. f(x) = sin (2x + 1) 

Pembahasan

a. f(x) = sin 3x
Misalkan:
u = 3x ⇒ u' = 3
f(x) = sin 3x
f'(x) = cos u . u'
f'(x) = cos 3x . 3
f'(x) = 3 cos 3x

b. f(x) = sin x2
Misalkan:
u = x2 ⇒ u' = 2x
f(x) = sin x2
f'(x) = cos u . u'
f'(x) = cos x2 . 2x
f'(x) = 2x cos x2

c. f(x) = sin 3x2
Misalkan:
u = 3x2 ⇒ u' = 6x
f(x) = sin 3x2
f'(x) = cos u . u'
f'(x) = cos 3x2 . 6x
f'(x) = 6x cos 3x2

d. f(x) = sin (2x + 1)
Misalkan:
u = 2x + 1 ⇒ u' = 2
f(x) = sin (2x + 1)
f'(x) = cos u . u'
f'(x) = cos (2x + 1) . 2
f'(x) = 2 cos (2x + 1)


Soal No.4

Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = cos 3x 
b. f(x) = cos x2 
c. f(x) = cos 3x2 
d. f(x) = cos (2x + 1) 

Pembahasan

a. f(x) = cos 3x
Misalkan:
u = 3x ⇒ u' = 3
f(x) = cos 3x
f'(x) = -sin u . u'
f'(x) = -sin 3x . 3
f'(x) = -3 sinx 3x

b. f(x) = cos x2
Misalkan:
u = x2 ⇒ u' = 2x
f(x) = cos x2
f'(x) = -sin u . u'
f'(x) = -sin x2 . 2x
f'(x) = -2x sin x2

c. f(x) = cos 3x2
Misalkan:
u = 3x2 ⇒ u' = 6x
f(x) = cos 3x2
f'(x) = -sin u . u'
f'(x) = -sin 3x2 . 6x
f'(x) = -6x sin 3x2

d. f(x) = cos (2x + 1)
Misalkan:
u = 2x + 1 ⇒ u' = 2
f(x) = cos (2x + 1)
f'(x) = -sin u . u'
f'(x) = -sin (2x + 1) . 2
f'(x) = -2 sin (2x + 1)


Soal No.5

Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin (x2 + 3x + 1) 
b. f(x) = cot (x3 + 3x2 + 1) 

Pembahasan
a. f(x) = sin (x2 + 3x + 1)
Misalkan: u = x2 + 3x + 1 ⇒ u' = 2x + 3
f(x) = sin (x2 + 3x + 1)
f'(x) = cos u . u'
f'(x) = cos (x2 + 3x + 1) . (2x + 3)
f'(x) = (2x + 3) cos (x2 + 3x + 1)

b. f(x) = cot (x3 + 3x2 + 1)
Misalkan : u = x3 + 3x2 + 1 ⇒ u' = 3x2 + 6x
f(x) = cot (x3 + 3x2 + 1)
f'(x) = -csc2 u . u'
f'(x) = -csc2 (x3 + 3x2 + 1) . (3x2 + 6x)
f'(x) = -(3x2 + 6x) . csc2 (x3 + 3x2 + 1)

Soal no.6 
Carilah turunan f'(x) dari fungsi-fungsi trigonometri dibawah ini :
a. f(x) = sin x cos 3x 
b. f(x) = tan x cos 4x 

Pembahasan

a. f(x) = sin x cos 3x
Misal :
u = sin x ⇒ u' = cos x
v = cos 3x ⇒ v' = -3 sin 3x

Turunan dari bentuk fungsi tersebut adalah :
f'(x) = u' . v + u . v'
f'(x) = cos x . cos 3x + sin x . -3 sin 3x
f'(x) = cos x . cos 3x − 3 sin x. sin 3x

b. f(x) = tan x cos 4x
Misal :
u = tan x ⇒ u' = sec2x
v = cos 4x ⇒ v' = -4 sin 4x
Turunan dari bentuk fungsi tersebut adalah :
f'(x) = u' . v + u . v'
f'(x) = sec2x . cos 4x + tan x . -4 sin 4x
f'(x) = sec2x . cos 4x - 4 tan x . sin 4x 


Soal No.7


Tentukan turunan pertama dari fungsi berikut :
y = 

1 + cos xsin x
 

Pembahasan

Misal :
u = 1 + cos x ⇒ u' = -sin x
v = sin x ⇒ v' = cos x

Maka :
y' = 

u' . v + u . v'v2

y' = 
-sin x (sin x) − (1 + cos x) (cos x)sin2 x

y' = 
-sin2 x − cos2 x − cos xsin2 x

y' = 
-(sin2 x + cos2 x) − cos xsin2 x

y' = 
-(1) - cos x1 - cos2 x

y' = 
-(1 + cos x)(1 − cos x).(1 + cos x)

y' = 
-11 − cos x

y' = 
1cos x - 1


Soal No.8


Tentukan turunan pertama dari fungsi berikut :
y = sin2 (2x + 3) 

Pembahasan 

Misalkan :
g(x) = 2x + 3 ⇒ g'(x) = 2

Rumus turunan untuk fungsi trigonometri berpangkat :
y = c sinn g(x)
y' = c. n sinn-1 g(x) . cos g(x) . g'(x)

Sehingga : y = sin2 (2x + 3)
y = {sin(2x + 3)}2
y' = c. n sinn-1 g(x) . cos g(x) . g'(x)
y' = 2 sin2-1 (2x + 3) . cos (2x + 3).(2)
y' = 4 sin (2x + 3) cos (2x + 3) 


Soal No.9


Tentukan turunan pertama dari fungsi berikut :
y = cos2 (2x2 + 3) 

Pembahasan 

Misalkan :
g(x) = (2x2) + 3 ⇒ g'(x) = 4x

Rumus turunan untuk fungsi trigonometri berpangkat :
y = c cosn g(x)
y' = -c. n cosn-1 g(x) . sin g(x) . g'(x)

Sehingga :
y = cos2 (2x2 + 3)
y = {cos(2x2 + 3)}2
y' = -c. n cosn-1 g(x) . sin g(x) . g'(x)
y' = -2 cos2-1 (2x2 + 3) . sin (2x2 + 3) . 4x
y' = -8x cos (2x2 + 3) . sin (2x2 + 3) 


Soal No.10


Tentukan turunan pertama dari fungsi berikut :
y = (sin x + cos x)s 

Pembahasan :

Misalkan :
g(x) = sin x + cos x ⇒ g'(x) = cos x - sin x

y = (sin x + cos x)2
y' = n [g(x)]n-1. g '(x)
y' = 2 (sin x + cos x)2-1.(cos x − sin x)
y' = 2 (sin x + cos x).(cos x − sin x)
y' = 2 (cos x + sin x).(cos x − sin x)
y' = 2 (cos2 x − sin2 x)
y' = 2 (cos2 x − (1 − cos2 x))
y' = 2 (2cos2 x − 1)
y' = 4cos2 x − 2.
Continue reading...

RUMUS INTERGAL

1.1 Definisi Integral Tak Tentu (Indefinite Integral)
Jika  maka y adalah fungsi yang mempunyai turunan f(x) dan disebut anti turunan
(antiderivate) dari f(x) atau integral tak tentu dari f(x)yang diberi notasi  . Sebaliknya, jika
 karena turunan dari suatu konstanta adalah nol, maka suatu integral tak tentu
mempunyai suku konstanta sembarang.
1.2 Rumus-rumus Integral Tak Tentu
1.3 Definisi Integral Tentu
Andaikan f(x) didefinisikan dalam selang  Selang ini dibagi menjadi n bagian yang sama
panjang, yaitu Maka integral tentu dari f(x) antara x = a dan x =b didefinisikan
sebagai berikut:
Limit ini pasti ada jika f(x) kontinu sepotong demi sepotong jika
maka menurut dalil pokok dari kalkulus integral, integral tentu diatas dapat dihitung dengan
rumus :
1.4 Rumus-rumus Integral tentu
 
 
dengan k sebagai konstanta sembarang. 

 

1.5 Integral Parsial 
Prinsip dasar integral parsial : 
  1. Salah satunya dimisalkan U
  2. Sisinya yang lain (termasuk dx) dianggap sebagai dv

Sehingga bentuk integral parsial adalah sebagai berikut :  
 
1.1 Beberapa Aplikasi dari Integral
a. Perhitungan Luas suatu kurva terhadap sumbu x 


 
 

b. Menghitung luas diantara dua buah kurva 
 
c. Menghitung volume benda putar yang diputar terhadap sumbu koordinat 
 
 
Continue reading...